Talk:Circuit breaker
This is the talk page for discussing improvements to the Circuit breaker article. This is not a forum for general discussion of the article's subject. |
Article policies
|
Find sources: Google (books · news · scholar · free images · WP refs) · FENS · JSTOR · TWL |
Archives: 1 |
This level-4 vital article is rated C-class on Wikipedia's content assessment scale. It is of interest to the following WikiProjects: | |||||||||||||||||||||||||||||||
|
"common trip" breakers
[edit]I modified the description of "common trip" breakers and took out the description of "low voltage". --Wtshymanski 19:21, 17 Dec 2004 (UTC)
- I tweaked the description a little more with what I hope is better language explaining where two-pole, common trip breakers are used. By the way, does it conform to the code to tie two single-pole breaker handles together to try to form a common-trip breaker? Given "Free trip" mechanisms, I don't think you can assure that the handle tie will actually trip the "other" pole. I know I wouldn't want anything other than a true two-pole, common-trip breaker. Atlant 19:38, 17 Dec 2004 (UTC)
- Yes, I like that much better. Of course you can have two-pole breakers on a 120/208V panelboard, or I suppose on a 240/415V board, or on a DC board. --Wtshymanski 19:40, 17 Dec 2004 (UTC)
Sorry don't have time to correct "(because RCDs need power to trip)", but the real reason is that they require a differential current to trip, which is higher than the typical lethal current flowing through a human (30ma vs 1ma potentially lethal current) — Preceding unsigned comment added by Fentlehan (talk • contribs) 22:32, 18 June 2012 (UTC)
Categories
[edit]Tiny circuit breakers, that you can put in a pocket, might be electronic components. Small breakers, that you can lift, maybe with the help of a friend, might be found in electrical distribution. Big breakers, that show up in SCADA screens at system control centers, are pretty plainly electric power transmission devices. And the 30,000 amp breakers attached to generators are power components. Am I the only one finding the categorization of the article to be unclear? That's why I like the category electrical engineering- it fits anything with wires on it. Do the extra categories actually help Wikipedia users? --Wtshymanski 22:44, 8 May 2005 (UTC)
- I agree. But you also need to look at how the categories are arranged. It appears, for example, that Category:Electrical engineering includes as subcategories things like Category:Electric power and Category:Electrical components. So maybe it shouldn't be in the supercategory on electrical engineering, but rather in several different subcategories under that. I think that someone has been carried away with removing categories from several articles similar to this, but if there is problem itmay lie in a poorly thought out category structure. (Or the structure may be brilliantly arranged, I don't think I'm going to try to sort it all out, I'll let others put in their two cents' worth on that.) Gene Nygaard 23:16, 8 May 2005 (UTC)
High-voltage Circuit breakers
[edit]I have completed the text with a description of interrupting principles used for HV circuit breakers (SF6 breakers as it is the technology now used for breakers 72,5 kV and above) Dingy 23 July 2005
- Thanks for this addition!
The images that illustrate the interrupting principles have been published in many publications or conference papers in India, France, China, Algeria.... there is no copyright, I am in fact close to the source.
Concerning the title "Internal details of a European breaker" , now that the part on high-voltage circuit breakers is more developed I think that it is necessary to change the title to "Low voltage European Circuit breaker" or something like that..; dingy 26 July
- Even if these images are not copyrighted, might it be a good idea to include a reference? I mention this especially because five of the six images used in the section "High-voltage circuit breakers" appear in one publication. The publication is: "Technical Trends in Circuit Breaker Switching Technologies", published in the CIGRE SC A3 Colloquium in Sarajevo, 2003. The authors are all listed as being from Alstom T&D (transmission and distribution). Although I have an electronic copy of the publication, online I have found referneces to it but no copy. Michapma, August 21
- Good idea, you should do it Dingy 00:59, 22 August 2006 (UTC)
ELCBs and the USA
[edit]A comment in the article asked:
- Were ELCBS that detect earth fault current directly ever used in the USA and if so what were they reffered to as?
If by ELCBs the questioner was referring to devices that measured, for example, the isolation between the power leads and ground/earth, then no, they have never been used in ordinary installations in the US. Because our power distribution systems almost always use a grounded neutral, there isn't any isolation to speak of.
Note that this is not true in specialized installations. For example, a large delta-connected motor, generator, or distribution circuit can certainly be isolated from ground and could be protected by an ELCB. Diesel-electric railroad locomotives frequently used just such an ELCB, energizing the traction motor circuits a small DC voltage away from ground and then measuring the current required to maintain that voltage (which ought to approach zero if the traction motor circuit was correctly isolated from the frame of the locomotive, but certainly became non-zero if, say, the traction motors became saturated with water).
But in ordinary practice, especially residential practice, it's all balance-fault interrupters.
Atlant 19:31, 17 July 2005 (UTC)
- afaict what was reffered to as an ELCB in the uk had two seperate earth terminals and detected current flow between them. E.G. one terminal would be attached to the earthing system and one to the earth rod. I think they were only generally used on TT systems though.
There is one more use in the US. Installations over 250V to ground and 1200A require a variant of the ELCB. Normally, these use electronics and CT's to measure the current and react accordingly. — Preceding unsigned comment added by LightRobb (talk • contribs) 02:12, 21 January 2015 (UTC)
Switchgear?
[edit]I do not agree with this analysis. Circuit breakers in combination are called switchgears, which should be stated.
- Well, this is Wikipedia so you know what to do: be bold!
A circuit breaker is a type of Switchgear that is designed to break load current and extinguish an arc. Generally switchgear is the description given to any high voltage electrical switching equipment and covers a variety of equipment such as circuit breaker, air break switch disconnectors (ABSD's), earthing switches etc..
- Switchgear is a general term covering switching devices and their combination. A circuit breaker is a switching device. You can conclude. Dingy (talk) 06:24, 4 August 2012 (UTC)
Close. Switchgear and switchboards are a type of CB installation. The CB's, and aux. equipment, are mounted in the gear or boards (I won't go into the differences here), and provide the required protection. You can also find fused switchboards, though they are a bit specialized. Note also that gear comes in both low (208V, 480V) voltage and high voltage flavors, boards are mostly low voltage. — Preceding unsigned comment added by LightRobb (talk • contribs) 02:15, 21 January 2015 (UTC)
high voltage
[edit]This page gives the impression that in high voltage engnineering cuircuit breaker means something somewhat different from what it means in low voltage wiring. in low voltage wiring a cuircuit breaker is something that detects a fault and automatically disconnects the supply. it seems in high voltage it means a device that breaks the cuircuit (which may be triggered by hardware sensing overcurrent that doesn't seem to be part of the breaker). Is this impression correct and if so should it be worked into the article somehow.
also the high voltage cuircuit breakers section is getting HUGE we should probablly break it out into a seperate article. Plugwash 16:43, 22 January 2006 (UTC)
- That is correct. Any breaker rated in multiple KV will generally have a trip coil operated by external protective relays, which might be anything from electromechanical plunger-type relays up to digital (numeric) multi-function systems capable of significant programmability and complexity. The "detection" and "interruption" are done in separate places, and if this is new to some then it's good that Wikipedia includes this data. Unluckily we've got a lot of electrical articles written at the home handyman level and as important as that level is in its own sphere, encyclopedia articles need to be more inclusive.
- There's quit a lot on arc interruption but it is important and presents the fundamental issue in circuit breaker design. It's important to show the contrast between small breakers and large breakers...the illustration of the small Euro breaker is great. Bitty breakers are kind of dull..HV is cool. --Wtshymanski 23:32, 22 January 2006 (UTC)
- Hehe... well, it's electrical safety equipment. I don't think "being cool" is on the list of desired characteristics, unless you mean temperature-wise. Reliable to the point of boredom, now that's on there... 193.63.174.10 (talk) 11:26, 30 September 2010 (UTC)
I'm not saying we shouldn't keep some information on high voltage breakers here and it *IS* interesting but right now that section is bigger (in terms of rendered screenfulls) than the rest of the article combined. definately a case for sumarising and moving to a more specialist article. Plugwash 01:09, 23 January 2006 (UTC)
- Hi, in the French version done later ("Disjoncteur à haute tension"), I made a separate article, a little more complete. The same could be done here, while keeping some text in this one. Dingy 04:02, 23 January 2006 (UTC)
Switching speed
[edit]"The double motion technique halves the tripping speed of the moving part" - I take this to mean that the total execution time has doubled? Perhaps the author meant tripping time instead?--Hooperbloob 08:05, 27 November 2006 (UTC)
- sorry for my bad english, the meaning is as flows : if one contact (of a 245 kV breaker) moves you ned a speed of 8 m/s, if both contacts move in opposite direction, each needs a speed of 4 m/s (halved) in order to have the same relative speed of 8 m/s. Is it clear now ? Dingy 13:42, 27 November 2006 (UTC)
Type Of MCBs
[edit]Could anyone tell me where are we suppose to use Type B MCB, Type C MCB and so on...?
Let's say a 20A Type-B MCB is connected to a current carrying conductor. At what current will the MCB trip? Is it slightly above 20A or 3-5 times the rated current as stated in the article? —The preceding unsigned comment was added by LHW (talk • contribs) 10:30, 15 December 2006 (UTC).
- MCBs are thermal magnetic hybrids, the thermal part follows a smooth curve of faster tripping as current increases and deals with overloading but even in the best cases its pretty slow to trip. The magnetic part trips at the points given in the article and when it trips it trips as fast as the mechanism can physically move (iirc the standard says less than 100ms). Plugwash 01:11, 16 December 2006 (UTC)
- Not all MCBs are thermal/magnetic. Last time I took apart a Square D "Q0" breaker, it was thermal-only.
type B MCB can be used for domestic lighting purposes while type C MCB can be used for the motoring circuits.
B type MCB's are recommended for lamps, fans, ovens, washing machines, house wiring etc
C type MCB's are recommended for Air conditioners, transformers and industrial loads. —Preceding unsigned comment added by 59.180.45.131 (talk) 06:46, 8 June 2008 (UTC)
further to above....how do i know which MCB to be used...6A or 10A or 16A or 20A....for domestic lighting purposes. —Preceding unsigned comment added by 59.178.156.253 (talk) 06:47, 4 July 2009 (UTC)
Standars Values
[edit]It should be noted that the listed standard low voltage molded case braker values are British or European sizes based on European standards and 240v system. The US sstandard values are different. —Preceding unsigned comment added by Mattmia2 (talk • contribs) 13:12, 20 September 2007 (UTC)
Speed up Arc Extinction
[edit]There are various types of high current, high voltage circuit breakers used by Power Industries, such as Air Blast, Minimum Oil, Vacuum, SF6 gas filled, Magnetic arc-quenched varieties etc. Apart from making or breaking the current flows in Power Lines, their main functions are to extinguish electric arcs that follow a circuit-current break. In an arc channel between two parting contacts one may delineate three distinct regions, viz, two thin regions attached to the parting electrodes and a central column. The thin regions act as interfaces conjoining the high density and low velocity e-flow within the electrodes and the low density and high velocity e-flow in the usually long central column. Such interfaces at anode are rather diffused and current densities are relatively low whereas at cathode end they are focused and current densities are high. The Electrical parameters on either side of this interface are widely separated and the mechanisms operative here are very complex. Only at low pressures, the interfaces at cathode end are spread out and some theoretical analyses as well as diagnostics of the arc parameters have been attempted.
All circuit breakers in general, are designed to extinguish the arcs by drawing out their central columns using an air blast, a gushing oil stream or a pinching magnetic field etc guided more by mechanical constructional conveniences. But, in general, an arc is relatively ‘strong’ and ‘stable’ at the mid-column regions and rather weak at the electrode interfaces, particularly at Cathode surface. Attempts to extinguish arcs at such weakest points should be beneficial as regards total energy dissipation and delay to extinction and hardly any report on such efforts is available. Initial experiments to verify the concepts may be pursued with only simple, plane parallel, stationary electrodes. Would any users be interested to participate in developing the theories / devising the experiments in this direction? We shall develop a model of the processes active in the cathode interface of the arcs shortly. —Preceding unsigned comment added by 210.211.202.164 (talk) 08:23, 25 October 2007 (UTC)
duplication of text
[edit]In the headlines "Rated current" and "Short circuit current". —Preceding unsigned comment added by Yossso (talk • contribs) 23:10, 20 August 2008 (UTC)
reasons for complexity of high voltage circuit breakers
[edit]The amount of content in the high voltage section suggests that stopping the current from flowing is not trivial. Perhaps this should be stated explicitly. Reading the article I infer that arcing is a normal occurence when trying to stop the current flow, and requires special measures to stop it (stop it safely?). I am no expert on the subject so I'm hesitant to edit. Walworth (talk) 11:40, 21 January 2009 (UTC)
More basic information needed by prospective users.
[edit]The reason most prospective users are interested in looking up circuit breakers, is for help in choosing an appropriate type. Of paramount importance is how the breaker attaches to the buss bar. The amount of space allotted to extraneous technical details crowds pertinent information off the page. As a user who has experienced breaker failure due to poor engineering I am in interested in basic construction. How about someone who has the needed information creating a simple page which contains information that is needed by the prospective customer. Pictures of the lever arrangement for opening and closing the circuit are fine, but one is enough since "if you've seen one you've seen 'em all" but the attachment arrangements of hooks and catches, of which there is great diversity, are considered unimportant by the average technical writer. On Wikipedia the more things change the more they stay the same. How about some basic circuit breaker information and limit the technical verbosity on at least one page. Please.24.145.62.13 (talk) 23:30, 28 October 2009 (UTC)
- But an encyclopedia is not a catalog. Choosing the appropriate type of circuit breaker for a given application requires more expertise than can be reasonably put into an encyclopedia article. It is appropriate to talk about basic common principles here, not exhaustively list (as one of thousands of possible examples) which brands and models of miniature molded-case circuit breakers fit which brands and models of panel boards without violating UL approval. Which circuit breakers would you have us describe here - the 3 Amp one that protects a TV set, or the one that failed and blacked out an entire 230,000 kV service for a large city? You could easily fill a Wikipedia with circuit breaker descriptions, application guides, and outline drawings - but this is the job of the manufacturers, not of an encyclopedia. --Wtshymanski (talk) 20:05, 13 November 2009 (UTC)
The 400 KV image does not show any breaker or switchgeer. It shows a small part of the 'visual indidicator of an open circut' which sits on both sides of a breaker. When a breaker opens then on both sides rods open to provide a visual indication that the circuit is not currently engaged. The Circut breaker for a 400KV line is much larger. —Preceding unsigned comment added by 68.144.56.118 (talk) 11:09, 7 March 2010 (UTC)
I came to article looking for information about response time of household AC panel circuit breakers -- the 15A - 100A types one would find in entrance panel. Found nothing. Also interested in response time of small resettable breakers attached to power strips, UPS's, various appliances (these range from 3-15A generally). None of article's external links gave any of this info either. Some mention would be useful, as well as one sentence indicating that because of this delay (xx-xxx millisec.?) that GFCI protection devices would be needed to protect users of equipment. I don't recall if article presently states that circuit breaker's main role is to protect circuitry and equipment, NOT users! But it should. —Preceding unsigned comment added by PapaJupe (talk • contribs) 16:10, 2 April 2010 (UTC)
I am new to wiki so if I violate any guidelines, please delete There are so many manufactures styles and vintages that images and specs would take thousands of pages If specs, size AIC ratings or pictures of cicuit breakers are needed, I will be happy to furnish them. — Preceding unsigned comment added by Circuit breakers (talk • contribs) 19:22, 6 December 2016 (UTC)
Medium-voltage circuit breakers ... are often built with draw-out construction
[edit]When they can be fixed needs clarification. This seems to indicate drawout construction is really optional. —Preceding unsigned comment added by 99.146.242.51 (talk) 18:02, 29 May 2010 (UTC)
Instantaneous tripping current terminology / formula
[edit]OK, am I just not getting something fundamental here, is it an esoteric sort of equation which needs further inline (or linked) explanation for a layman (i.e. the everyday wiki searcher) to understand, or it it an outright mistake?
The rating is described as being of the form "x/n", where x is determined by the rating (e.g. 2~3 for "B"), and, I can only assume, n is the breaker's normal rated current (ie long term sustained current).
Now what this means is, if I understand how this is written, for and within each of the classes - B, C, D, etc - the higher the sustained current rating, the lower the instantaneous tripping current, in a classical inverse relationship. E.G. for a B-class breaker, rated at 6A continuous, the ITC is between 0.333 and 0.5A (2-3/6, or 1/3-1/2). But one rated at 20A continuous has an ITC of only 0.1 to 0.15A (2/20-3/20...)
This surely can't be correct. So where's the misunderstanding/mistake? 193.63.174.10 (talk) 11:44, 30 September 2010 (UTC)
Hydraulic-magnetic circuit breaker
[edit]I think the following topic is missing in the article:
Hydraulic magnetic circuit breakers incorporate an hydraulic machanism for overload protection. This usually substitutes the thermal part of magneto-thermic breakers. Basically, the magnetic coil tries to pull a ferromagnetic rod which is confined in a liquid medium. A spring tries to keep the rod at the rest position. Depending on the overload, this rod moves faster or slower towards the tripping end. At the time it reaches the tripping end, the breaker opens the circuit. Different curves are possible by adjusting the liquid flow by means of a small hole of calibrated diameter. Therefore, the pair coil-spring (force and counter-force) adjusts the steady current capacity, and the pair liquid-hole (drag force) adjust the tripping curve. Hydraulic magnetic switches are preferred to magneto-thermic ones in that the operation does not depend on the temperature, and therefore these dispositives are able to be rearmed immediately after a trip and function as the first time. In other words, they have no memory effect.
Google returns several links under "hydraulic magnetic". Here is one: [1]
Thanks. —Preceding unsigned comment added by Jsola (talk • contribs) 07:56, 6 May 2011 (UTC)
- Hydraulic-magnetic breakers do indeed exist. The were and still are still manufactured in the UK by a company called Crabtree. Their most popular model being the C50, available in both single and three phase versions, though they are quite large compared to modern designs.
- Your description of operation is not quite correct (but close). The mechanism consists of an oil filled dashpot with a ferrous core spring loaded to one end. On moderate overload, the current draws the core along the dashpot against the spring. As the core moves, the magnetic field concentrated at the other end increases until it is strong enough to trip the breaker. As the overload increases, the speed of movement through the dashpot increases, but the core does not need to move as far. Near instantaneous operation occurs if the overload is large enough that the magnetic field is able to trip the breaker before the core starts to move. The exact design of the dashpot and core determines the breaker's characteristics (the assembly being common among like type breakers), with the energising coil determining the current rating. Unlike thermal breakers, hydraulic-magnetic breakers have to be designed for AC circuits or for DC because their characteristics are markedly different on such circuits. Contrast a thermal breaker which van be used on either circuit provided its contacts are DC rated.
- You are incorrect to assert that the operation is independent of temperature. The viscosity of the oil in the dashpot is very temperature dependent and the time -v- current characteristic shortens as temperature rises more rapidly than the equivalent characteristic of a thermal breaker.
- You are correct (if I read your English correctly) that a Hydraulic magnetic breaker fully resets very quickly once it has tripped as the spring restores the ferrous core to the end of the dashpot almost immediately. Contrast a thermal breaker where the heated parts takes a significant time to cool down. Unfortunately, I cannot locate any material on the operation so cannot cite an addition to the article. HasAnyoneSeenMyMarbles (talk) 14:57, 8 February 2017 (UTC)
- At least the type is mentioned now. The lack of discussion of this type in my local standard electrical references comforts me that this was not a major oversight in the article as it stood, though. --Wtshymanski (talk) 20:36, 9 February 2017 (UTC)
US 15A/20A most common breakers
[edit]Please add a sample picture of the most common 15A/20A US circuit breakers. Please add the fact that 15A and 20A are the most common sizes of residential circuit breakers in the US. -96.233.19.191 (talk) 14:50, 11 July 2014 (UTC)
trip speed
[edit]The "Instantaneous tripping current" section is too theoretical.
We need a graph illustration like this one:
- www.bluesea.com/support/articles/Circuit_Protection/100/Fuse_Circuit_Breaker_Speed_Explained
- Speed Delay
- Opening speed, or delay, defines the relationship between the percentage by which the fuse or circuit breaker is operating over its Amperage Rating and the length of time that will be required for it to open. The opening of a fuse or circuit breaker is determined not just by the amperage rating, but by the amount of time and the percentage over its amperage rating at which it is being operated. The higher the % of current flow to amperage rating, the faster the circuit protector will open.
- A chart such as the one shown here commonly represents this relationship.
and text that both explains the general concept and gives a maximally relevant ordinary-case example. So if this graph did apply to a common US 20A circuit breaker, we would say that the breaker would be expected to pass up to at least 22A on a continuous basis, and would pass a surge of at least 60A for a tenth of a second without tripping, but could be expected to trip within 1-sec max at 40A. At 25A it might trip as quickly as half a sec, but might take up to about a half min.
And we should specifically mention "nuisance tripping", and explain that motors have short-term peak surge currents when they start, so circuit breakers are designed to not trip too quickly. -96.233.19.191 (talk) 16:39, 11 July 2014 (UTC)
Lever positions - Article states "Also indicates the status of the circuit breaker (On or Off/tripped)." We should edit the parenthetical remarks to say (On, tripped, Off, Reset). If no one objects here, I shall return and make the correction. Sponsion (talk) 20:14, 20 January 2017 (UTC)
UL standards (USA) are confusing and lacking (with broken refs)
[edit]I wish the USA's standards were described as well as internation ones. From the article: "In the United States, Underwriters Laboratories (UL) certifies equipment ratings, called Series Ratings (or “integrated equipment ratings”), using a two-tier rating. For example, a 22/10 rating. This rating means that the meter pack has a 22 kAIC tenant breaker, feeding a 10 kAIC loadcenter with 10 kAIC branches, where kAIC stands for “Thousand Ampere Interrupting Capacity.” Common meter pack ratings are 22/10, 42/10 and 100/10."
As a engineer with a masters (not to boast, just for context), I can't understand this jargon at all. The reference [1], is broken with no Google cache. What's a tenant breaker? What's a loadcenter? — Preceding unsigned comment added by 169.231.82.57 (talk) 22:15, 18 February 2013 (UTC)
UL listing means the original equipment manufacturer (OEM) prepares a white paper about their product and states emphatically the stringent safety test(s) the OEM will perform during manufacture of their product. UL regularly visits the OEM and certifies the OEM is testing their product based upon the OEMs stated safety test(s). Sponsion (talk) 19:52, 20 January 2017 (UTC)
References
breakers
[edit]how often do circuit breakers go bad themselves? Jeff Kizziar 01/03/15--71.32.95.26 (talk) 21:30, 3 January 2015 (UTC)
miniature history
[edit]why we cal circut breaker miniature?????Mohammadsdtmnd (talk) 12:58, 26 October 2015 (UTC)
External links modified
[edit]Hello fellow Wikipedians,
I have just modified one external link on Circuit breaker. Please take a moment to review my edit. If you have any questions, or need the bot to ignore the links, or the page altogether, please visit this simple FaQ for additional information. I made the following changes:
- Added archive https://web.archive.org/web/20130516021322/http://www.labplan.ufsc.br/congressos/td2006/Papers/TD06_525.pdf to http://www.labplan.ufsc.br/congressos/td2006/Papers/TD06_525.pdf
When you have finished reviewing my changes, please set the checked parameter below to true or failed to let others know (documentation at {{Sourcecheck}}
).
This message was posted before February 2018. After February 2018, "External links modified" talk page sections are no longer generated or monitored by InternetArchiveBot. No special action is required regarding these talk page notices, other than regular verification using the archive tool instructions below. Editors have permission to delete these "External links modified" talk page sections if they want to de-clutter talk pages, but see the RfC before doing mass systematic removals. This message is updated dynamically through the template {{source check}}
(last update: 5 June 2024).
- If you have discovered URLs which were erroneously considered dead by the bot, you can report them with this tool.
- If you found an error with any archives or the URLs themselves, you can fix them with this tool.
Cheers.—InternetArchiveBot (Report bug) 04:31, 25 November 2016 (UTC)
Electrical Fire Risks Associated with Circuit Breakers
[edit]An analysis of the fire risks associated with circuit breakers? One imagines that, certainly with high voltage applications, there is the potential for fires to start when the contact arcs of the circuit breaker damage the material out of which the circuit breaker is made. Are circuit breakers lined with/made from flame re-tardant/flame proof materials? Sorry if this is a silly question, but the article doesn't seem to mention the word 'fire' at all. ASavantDude (talk) 16:07, 10 March 2017 (UTC)
Carbon dioxide (CO2) high-voltage
[edit]"By switching from SF6 to CO2 it is possible to reduce the CO2 emissions by 10 tons during the product's life cycle."[2] This is a faithful reproduction of the source but I think it is misleading. It probably means "greenhouse gas equivalent to 10 tons of CO2". Comments please. Mock wurzel soup (talk) 00:31, 14 September 2019 (UTC)
Why 63, 630, 6300?
[edit]What is the history of 63A rated circuit breakers? It seems like an odd number. — Preceding unsigned comment added by 124.187.243.156 (talk) 02:57, 11 February 2022 (UTC)
- <years later> It depends on which series of preferred numbers your standards agencies like to use. IEC standards like to space out ratings a little more evenly in a decade than the 1-2-5 sequence. This is why we have NEMA standard circuit breakers rated 50, 60, 70,, etc. amps. --Wtshymanski (talk) 16:31, 1 July 2024 (UTC)
- Here in the UK, a 63 amp circuit breaker is a standard size. While most circuit breakers are the more usually encountered sizes, there are a few that were intended for ring circuit systems. 32 amp for single phase ring circuits using 13 amp sockets (limited only by area covered), and 63 amp for 32 amp sockets in either a single or three phase system (also limited by area covered). We also have a 16 amp breaker solely for single phase radial circuits using not more than 8 x 13 amp sockets (a double counts as 2). We can also have a 9 to 12 x 13 amp socket single phase radial circuit, but that uses a more standard size 20 amp breaker.
- AFAIAA, there is no 630 amp or 6300 amp breaker. 2A00:23C8:9883:A001:9C13:B6AB:B05:437C (talk) 12:36, 2 July 2024 (UTC)
- You'd probably only find a 630 amp frame size circuit breaker in a list of IEC-rated equipment. 6300 amp would be a very large circuit breaker, the only ones I can think of that would be in that capacity range ( or greater) would be generator circuit breakers and their ratings don't seem to follow the preferred number sequence because they are so specialized. --Wtshymanski (talk) 20:26, 4 July 2024 (UTC)
- AFAIAA, there is no 630 amp or 6300 amp breaker. 2A00:23C8:9883:A001:9C13:B6AB:B05:437C (talk) 12:36, 2 July 2024 (UTC)
Typo found
[edit]The link to [magnetic blowout coils] about 3 pages into circuit breaker article mis-directs to something else (contactors). Tim Coahran (talk) 21:04, 25 June 2023 (UTC)
Later: disregard. I found it when following the link to the full article, rather than just viewing the thumbnail.
"Vacuum circuit breaker" listed at Redirects for discussion
[edit]The redirect Vacuum circuit breaker has been listed at redirects for discussion to determine whether its use and function meets the redirect guidelines. Readers of this page are welcome to comment on this redirect at Wikipedia:Redirects for discussion/Log/2024 June 24 § Vacuum circuit breaker until a consensus is reached. Couruu (talk) 12:57, 24 June 2024 (UTC)
Confused association with over-current protection
[edit]This article describes and discusses the term circuit breaker as being specifically a device protecting against over-current. However, while the term 'circuit breaker' is commonly used to refer specifically to such devices, I believe that this is technically incorrect; it is not specific to any one type of fault.
~~ Edit: Note added at end after writing all this regarding Americanisation) ~~
This is backed up by the definition in the UK wiring standard, which is written 'taking into account the technical substance' of the international standards produced by the IEC. The BS 7671:2018+A2:2022 edition's definition specifically is this:
Circuit breaker. A device capable of making, carrying and breaking normal load currents and also making and automatically breaking, under predetermined conditions, abnormal currents such as short-circuit currents. It is usually required to operate infrequently although some types are suitable for frequent operation.
Abnormal currents could for example be a line-to-neutral short circuit, or a line-to-earth short-circuit (leakage) — chapter 53 clarifies explicitly that the term short-circuit can refer to earth fault current — not that the definition is limited to short-circuit type faults, it says 'such as'.
This fundamentally just describes a fault-protection device based around a switch.
This notion is further backed up by this blog post by Schneider electric, a major European manufacturer of these devices, which includes RCDs, RCCBs and RCBOs in its list of circuit breaker devices.
For over-current protection BS 7671 uses the specific term over-current protective device (OCPD), which applies to both those of circuit breaker form, and fuses.
The circuit breaker term I believe came into existence hand in hand with the development of an alternative solution to fuses/fuse-wire, and development at that time was, I believe, focussed on over-current, so it's understandable how it came to be synonymous with over-current protection.
Furthermore the terms MCBs (miniature circuit breaker) and MCCBs (moulded case circuit breakers) include the term and are themselves also considered specifically to be over-current protection devices. An MCCB fundamentally has adjustable characteristics while an MCB is fixed. One important aspect of these is their form factor being suitable for distribution boards/consumer units/electrical panels. BS 7671 does not include definitions for these itself, it just has entries in its index that redirect you to the circuit breaker entry. Definitions may well be found in other standards that I don't have copies of. So are these also actually generic terms with form-factor being the key detail, or are these terms truly over-current specific? The Schneider electric blog post above does describe them as being over-current specific, so unless there's proof otherwise I'll assume that's correct and it's just unfortunate that they are named so generically.
(Is it possible that the misuse of the term circuit breaker is actually just a shortening of MCB, just as breaker is short for circuit breaker?)
The circuit breaker term has also been used subsequently in RCCB (residual-current circuit breaker) and ELCB (Earth-leakage circuit breaker) terms, which both protect against earth-leakage current. (ELCB generically covers current- and voltage-based solutions, while RCD is current-based specifically). It is not used for AFDDs (arc-fault detection devices) or AFCIs (arc-fault circuit interrupters) which protect against arc-faults. (Note that I recently changed the ELCB article to earth-fault protective device to make it more generic, thinking at that time of circuit breaker as relating to the consumer-unit form factor, while earth-leakage tech can also be found within sockets/receptacles and such, however it now occurs to me that this is wrong, that circuit breaker applies to those to, and that VO-ELCBs came in the form of stand-alone devices external to consumer units, so maybe I'll need to reverse that).
How should the problem I have presented here best be solved?
Note that something that led to me writing this was that the RCD article, which I'm doing work on, has links to overcurrent protection which currently gets redirected to Power_system_protection which is completely unsuitable for a reader who simply needs to gain the understanding that over-current protection in a domestic premise is provided by an "ordinary" circuit breaker (or fuse), and the description there of over-current protection does not describe how an MCB works internally.
The fuse article has quite a lot of content, and there's also quite a lot of content here about the circuit-breaker form of over-current protection (only excluding the 'other breakers' bit at the end), so I think that it wouldn't work to merge them into one over-current protection [device] article.
Perhaps instead:
- This article could be renamed to 'miniature circuit breaker', including MCCB as an alternate name mentioned in the intro (similar to how the RCD article mentions some alternate names), thus making it correctly over-current specific, while leaving the fuse stuff separate, and mentioning that 'circuit breaker and breaker' are common though incorrect abbreviations. The OCPD term should be mentioned in the intro.
- References to over-current protection can be redirected to this article for now at least, ideally they should go to either a generic over-current protection [device] stub that links to MCB and fuse, or to a section within an article discussing the types of faults possible in an electrical installation.
- A new stub article could perhaps be created for circuit breaker, defining it in proper generic terms as above, mentioning the common but incorrect use of the term, and linking here to miniature circuit breaker, having the 'other breakers' stuff moved to it.
Edit: Having written all of this, but before posting it, I found a 2017 copy of the US NFPA-70, and surprisingly their definition of circuit breaker actually is over-current specific. So essentially the naming of this article is an Americanisation and this throws up a big complication... Okay, so perhaps then the only suitable solution has to include renaming this article to circuit breaker (overcurrent) as a disambiguation, with a new circuit breaker stub article talking about the two distinct meanings (generic and over-current specific). DiscreetParrot (talk) 00:29, 27 January 2025 (UTC)
- We definitely should not rename the article or split this into two articles. At most a short section about other sorts of abnormal current could be added. MrOllie (talk) 00:39, 27 January 2025 (UTC)
- I'm sorry but that doesn't make any sense.
- Overload, short-circuit (line to neutral), earth-leakage, arc-fault, and over-voltage, are types of fault needing to be protected against. The first two fall under the banner of over-current protection. Everything in this article, besides the little bit at the end titled 'other breakers', discusses resettable switch-based devices (circuit breakers) that specifically provide overcurrent protection.
- There's no call for splitting up the existing content (besides that bit at the end).
- Talking about 'other forms of abnormal current' within this article would be completely out of place for the current content. The intro describes a device protecting against overcurrent. How would it logically follow to include in this article a small section talking about other forms of fault. This article is not a central hub for discussing all of the various kinds of faults.
- Either (a) we have circuit breaker discuss the two different meanings of the term circuit breaker, the US overcurrent-specfic meaning and the more generic meaning, and move the existing content here to circuit breaker (overcurrent), or (b) we adapt the intro of this article to discuss this stuff, but then either we've got to oddly state that all sections that follow discuss overcurrent types of circuit breaker specifically, or it would all have to be grouped under an overcurrent section heading, and both of these options are just plain ugly. DiscreetParrot (talk) 01:13, 27 January 2025 (UTC)
- To clarify I mean both choices of option B are ugly, not option A. DiscreetParrot (talk) 01:19, 27 January 2025 (UTC)
- I don't really accept the premise of the dichotomy you are presenting here. Two different national standards bodies have written slightly different definitions, but it does not follow that they are actually describing substantially different topics that need to be disambiguated from an encyclopedic perspective. If you have something specific to say about earth-leakage (or whatever else), just cite a source and put it in a new section. MrOllie (talk) 01:21, 27 January 2025 (UTC)
- One states that the term only applies to devices targetting overcurrent, which is the premise this article was originally based upon. The other states that it's a generic term that can apply to devices targetting various different problems (the other types not being subordinate to, or in anyway directly related to, overcurrent).
- As previously stated, to account for this within this article, the introduction would need to be completely rewritten to discuss this. The article would then no longer be overcurrent-specific. And then something would thus have to be done about the fact that all of the rest of the content of this article is specifically describing devices built for overcurrent protection - all of that content would thus logically need grouping under a new section representing 'overcurrent types', but with no intention of adding any content about other types of breakers here, since they're well covered in other articles like the RCD one, this would thus be ugly. Logically the existing bulk content of this article would best belong in its own article dedicated to the overcurrent form of breaker.
- What I was exploring doing was to move this article (preserving history) to circuit breaker (overcurrent) and tweak the intro ever so slightly to clarify that its contents are all specifically describing circuit breakers that provide overcurrent protection. Then add a new circuit breaker stub article that discusses the different use of the terms in different standards, and link through to the various breaker related articles. This makes perfect logical sense to me. DiscreetParrot (talk) 02:06, 27 January 2025 (UTC)
- Wikipedia article titles should not contain unnecessary disambiguation and should follow common names and not industry technicalities - your proposal would not follow those principles. I also doubt it would be possible to write the new 'standards comparison' article you suggest without violating WP:OR, unless you have a secondary source that explicitly describes a conflict in terminology. MrOllie (talk) 02:38, 27 January 2025 (UTC)
- To be clear, edits like this one are clearly WP:OR as well. We'd need a secondary source to explicitly make this point. Citing a primary source and editorializing based on it is against the policy. MrOllie (talk) 02:51, 27 January 2025 (UTC)
- And please don't invent your own terminology in the opening sentence, like 'An (overcurrent) circuit breaker'. MrOllie (talk) 02:52, 27 January 2025 (UTC)
- To be clear, edits like this one are clearly WP:OR as well. We'd need a secondary source to explicitly make this point. Citing a primary source and editorializing based on it is against the policy. MrOllie (talk) 02:51, 27 January 2025 (UTC)
- Wikipedia article titles should not contain unnecessary disambiguation and should follow common names and not industry technicalities - your proposal would not follow those principles. I also doubt it would be possible to write the new 'standards comparison' article you suggest without violating WP:OR, unless you have a secondary source that explicitly describes a conflict in terminology. MrOllie (talk) 02:38, 27 January 2025 (UTC)
- C-Class level-4 vital articles
- Wikipedia level-4 vital articles in Technology
- C-Class vital articles in Technology
- C-Class electronic articles
- Top-importance electronic articles
- WikiProject Electronics articles
- C-Class electrical engineering articles
- High-importance electrical engineering articles
- Electrical engineering articles
- C-Class Occupational Safety and Health articles
- Mid-importance Occupational Safety and Health articles
- WikiProject Occupational Safety and Health articles